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1 Uniform Acceleration

This material is to prepare a transition towards General Relativity via the Equivalence
Principle by �rst understanding uniform acceleration.

The Equivalence Principle stated in a simple form: Equivalence Principle: A
uniform gravitational �eld is equivalent to a uniform acceleration.

This is not very precise statement and one lesson we have learned in Special
Relativity is the need to be precise in our statements, de�nitions, and use of
coordinates. We will come to a more precise statement of the Equivalence Principle

in terms like at a space-time point with gravitational acceleration ~g there is a tangent
reference frame undergoing uniform acceleration that is equivalent. This is similar to
the instantaneous rest frame of Special Relativity in the case of an object undergoing
acceleration.

We �rst need to understand carefully what is a uniform acceleration reference
frame, which we will do in steps.

First imagine a reference frame { a rigid framework of rulers and clocks,
our standard reference frame { undergoing uniform acceleration. In classical
nonrelativistic physics we can imagine a rigid framework to which we can apply a
force which will cause it to move with constant acceleration.

However, in Special Relativity no causal impulse can travel faster than the
speed of light, thus the frame work cannot be in�nitely rigid. When the force causing
the acceleration is �rst applied, the point where the force is �rst applied begins to
accelerate �rst and as the casual impulse moves out, the other portions join in the
acceleration.

Consider a simple long rod as an example: If one pulls on a long rod, it will
lengthen at �rst as the end being pulled starts moving before the other end even
knows it is. Then as it gains speed, Lorentz-FitzGerald contraction will cause it to
shorten. If one pushes on the long rod from behind, it will �rst shorten as the end with
the force moves toward the other end which sits there unaware of the some to arrive
acceleration. All objects, however rigid, evidently display some degree of elasticity
during acceleration. It is clear that in Special Relativity no rod can be in�nitely rigid
but must be elastic at some level. (Home work problem: prove that since the speed
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of sound is less than or equal to the speed of light, that the rigidity of any material
is less than xxx?)

As a body accelerates, it moves in a continuous fashion from one inertial system
to another. If it is to retain its same rest length in its instantaneous rest system, then
it length relative to its original inertial system will have to decrease continuously
because of Lorentz-FitzGerald length contraction. If, on the other hand, it retained
the same length relative to the original inertial system, then the Lorentz-FitzGerald
contraction would require its rest length to increase as its gains speed. This is not
very satisfactory.

Either way, the metric will depend upon time. If we want a direct comparison
to gravity, we need to require an accelerated coordinate system to have a time
independent form.

1.1 Accelerating a Point Mass

A uniformly accelerating point mass is one that is subject to the same force in each
and every one of its instantaneous rest systems. I.e. a uniformly accelerating point
mass is subject to a constant force ~F = mo~g along the +x-axis in a coordinate system
which is the inertial frame where its velocity is zero (instantaneous rest frame).
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Acceleration transforms as

ax =
d2x

dt2
=

a0x

3
�
1 + vu0

x

c2

�3 (1)

so that in the instantaneous rest frame a = �3a0. In the instantaneous rest frame
Fx = F 0

x. Now we can solve the equation of motion in either of two ways: from the
acceleration or from the force. In Problem Set 2 we solved the problem for a uniformly
accelerating rocket using the acceleration transformation. 1

1In rocket frame the acceleration was a0

x = g (Note reversal of S0 and S compared to discussion
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Here we use force transformation.

F 0

x =
dp0x
dt0

= mog = Fx

dmo�c
2

dct0
= mog

d(�) =
g

c2
d(ct0)

� =
g

c2
(ct0) =

gt0

c
(2)

where the constant of integration is set equal to zero because we de�ne the time zero
to be when � = 0. This can be turned into an equation for � alone:

� =
�p

1� �2
=

g

c2
(ct0) =

gt0

c

�2

1 � �2
=

 
gt0

c

!2

� =
(gt0=c)q

1 + (gt0=c)2
(3)

So that, from the laboratory, observing the test particle start from rest we �rst see
its velocity increasing linearly with time as we classically expect for a particle under
uniform acceleration. Then as the velocity begins to be a signi�cant fraction of
the speed of light, the term in the denominator becomes increasing important and
the velocity increases ever more slowly in time and only approaches the speed of
light asymptotically. The shape of the trajectory of a particle undergoing uniform
acceleration is a hyperbola and not the classical parabola, but for low velocities they
are indistinguishable conics.

Note also

 =
1p

1� �2
=

s
1 +

�
gt0

c

�2

(4)

If we look at the Lorentz factor , we see that it is �rst very nearly unity and then
as the velocity begins to saturate,  increases linearly with time. This is simply
conservation of energy, as the constant acceleration (force in the instantaneous rest
frame) is constantly doing work W = cF .

Now take a side step and evaluate in terms of proper time.

d� =
dt0


=

dt0r
1 +

�
gt0

c

�2

in this section.) Thus the acceleration in the Earth frame was ax =
�
1� v2=c2

�3=2
g = dvx=dt.

Regrouping we had gdt = dux=
�
1� v2=c2

�3=2
and integrating gives gt = v=

p
1� v2=c2 or

v=c = gt=c=
p
1 + (gt=c)2.
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� =
Z

dt0r
1 +

�
gt0

c

�2 =
c

g
sinh�1

 
gt0

c

!

or inverting the equation to �nd t0 in terms of proper time �

t0 =
g

c
sinh

�
g�

c

�
(5)

end aside

Now we can solve for x0 using the de�nition of � = dx0=d(ct0).

dx0 = �d(ct0)

x0 = xo +
Z ct0=ct0

ct0=0
�d(ct0) = xo +

Z ct0=ct0

ct0=0

gt0=cq
1 + (gt0=c))2

d(ct0)

=
c2

g

s
1 +

�
g

c2
(ct0)

�2
jct0=ct0t0=0 + x0o

=
c2

g

q
1 + (gt0=c)2 � c2

g
+ x0o (6)

De�ne

x0P � x0o �
c2

g
(7)

Then our equation becomes

x0 � x0P =
c2

g

s
1 +

�
g

c2
ct0
�2

�
g

c2
(x0 � x0P )

�2
= 1 +

�
g

c2
ct0
�2

�
g

c2
(x0 � x0P )

�2

�
�
g

c2
ct0
�2

= 1 (8)

This last equation describes a hyperbola. Note that we can �nd a formula for x in
terms of � given the last equation for x0 in terms of t0.

(g=c2)2(x0 � x0P )
2 � (gt0=c)2 = 1

(g=c2)2(x0 � x0P )
2 = 1 + (gt0=c)2 = 1 + sinh2(g�=c) = cosh2(g�=c)

or

x0 = x0P +
c2

g
cosh

�
g�

c

�
= x00 �

c2

g
+
c2

g
cosh

�
g�

c

�

Note that x00 is directly related to the x0 in the accelerating frame.
Because the world line is a hyperbola in Minkowski space, the world line of

the point mass approaches the light line asymptotically. This means all events on the
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world line will have a space like relationship to all events to the left of the focal point
P � (0; x0P ).

x0P = x0o �
c2

g
(9)

So that the distance between the rest point and focal point is proportional to the
inverse of the acceleration.

insert �gure here showing frames with small acceleration and with

large accelerations.

� =
gt0=cr

1 +
�
gt0

c

�2 g

c2

�
x0 � x0p

�
=

s
1 +

�
gt0

c

�2
(10)

Therefore

� =
ct0

x0 � x0P
= tan� (11)

where � is the horizontal angle.
insert �gure here showing � etc. The line from point P, (0; x0P ) to

point (ct0; x0) is the x axis in the instantaneous rest frame. De�nes simultaneity
in instantaneous rest frame is changing constantly since the instantaneous rest frame
is continuously changing.

insert �gure here showing world lines etc. and that P is a pivot

point.

The observer A no matter where along his world lines never knows the future
of the observer passing through the pivot point and objects to the left are never in
casual contact but if they did would appear to move backward through time. ....

Now calculate the distance from event P = (0; x0P ) to event (ct0; x0)

 
c2

g

!2

= (x0 � x0P )
2 � c2t02 (12)

combining that with the equation for � yields

� =
ct0

x0 � x0P
�2 (x0 � x0P )

2
= c2t02 (13)

Evaluate this for t0 = 0 to get the distance, xPA, between event P and where A crosses
the x0 axis.

(xPA)
2 =

 
c2

g

!2

= (x0 � x0P )
2 � �2 (x0 � x0P )

2
=
�
1 � �2

�
(x0 � x0P )

2
(14)

(x0 � x0P ) = x0PA (15)
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Lorentz contraction x0PA = xPA=.
It is easy to show that the distance from the pivot point to any point on the

hyperbolic trajectory is the same. The accelerating system moves in such a way
that the distance to the pivot point is increasing in inertial space by precisely its
instanteous gamma so that the Lorentz length contraction makes the distance to the
pivot point in its rest frame constant. I.e. if the line of simultaneity intersects A's
trajectory at point B then from the hyperbola formula above for all B we have

(x0B � x0P ) = x0PA (16)

Thus xB � xP = xPB = x0PA The distance from the pivot point event (0; xP ) to the
mass point at B as measured in the accelerated coordinate system is the same as the
distance from the pivot point event (0; xP ) to the mass point when it was at rest or
any other point on its trajectory. Therefore to an observer in the accelerated system
the point mass maintains a �xed distance to the pivot point event (0; xP ) throughout
its motion. Thus despite accelerating away continously the eternal moment remains
a �xed distance away.

1.2 Uniformly Accelerated Reference Frame

We are now in a position to discuss a uniformly accelerated reference frame.
insert �gure of two uniformly accelerating masses with same focal

point.

Consider two observers (1) and (2) both with the same focus point x0p and both
cross the x0-axis at the same t0 = 0. Then there is always the same distance from x0p
and thus each other. As a result they will have to have di�erent accelerations because
they have the same focus

a1 = g1 = c2=x01 a2 = g2 = c2=x02 (17)

This is what one sees in the �gure with the curves further away from the focal point
being atter. A straight line is a the world line for a non-accelerating particle.

One can make a uniformly accelerated frame, if the acceleration of each
point is inversely proportional to its distance from the focus point x0p. Actually
(ct0; x0) = (0; x0p).

An observer riding with a meter stick in this accelerated frame would say it
maintained a constant length. An observer in an inertial frame (e.g. our Lab frame)
claims the rod is shrinking in time as it accelerates away. However, as it approaches
the origin, it lengthens and slows down.

A rod on the other side of the origin accelerates to the left rather than the
right.

This situation is called a Rindler Space.
Note that the coordinate choices are di�erent from our usual every day

conventions. Usually we chose the vertical axis to be the z-axis and have the e�ective
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acceleration \downward" toward negative z. What we would observe conventionally
from our inertial frame would be an elevator rushing doward towards us at high speed
and decellerating at a rate g coming to a stop at a distance and then accelerating
upwards away retracing its path.

Note that the acceleration depends on distance away from pivot point. That
is the only system in which the clocks in the instanteous rest frame do not have to
continuously be reset relative to each other.

1.2.1 Coordinate System for a Uniformly Accelerating System

There are two natural frames in which to describe a uniformly accelerating system.
They are the accelerating coordinates � the proper (rest frame) time and related
coordinates and the coordinates of one inertial frame that matches the accelerating
frame at one instant.

The transformation between the coordinate systems is given by

x0 = �c2

g
+

 
x+

c2

g

!
cosh

�
g�

c

�

ct0 =

 
x+

c2

g

!
sinh

�
g�

c

�
(18)

where g is standing in for the uniform 3-acceleration magnitude a. Note that this is
what one must expect for the form of the time transformation. At the pivot point
x = xP = �c2=g time must be frozen (thus the name pivot point). If we put that
value in, then we �nd ct0 = 0 independent of � As one moves away from the pivot
point, the conversion to t0 must increase linearly with the distance from the pivot
point. Thus it must be proportional to x+ c2=g.

1.2.2 The Metric for a Uniformly Accelerating System

We want to �nd g��
(cd� )2 = ds2 = g��dx

�dx�

For an inertial frame we have the Minkowski metric ��� which in Cartesian coordinates
is diagonal and constant

��� = [1;�1;�1;�1]
How about expressing this in terms of the proper time � and the instanteous rest
frame coordinates x, y, and z?

dx0 = cdt = sinh(g�=c)dx1 + (1 + gx=c2)cosh(g�=c)d�

dx1 = dx0 = cosh(g� )dx1dx1 + (1 + gx=c2)sinh(g�=c)d�

(cd� )2 = ds2 = (1 + gx=c2)2(cd� )2 � (d~x)2

g�� = [(1 + gx=c2)2;�1;�1;�1] g�� = [(1 + gx=c2)�2;�1;�1;�1]
Note the di�erence between covariant and contravariant.
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1.3 Alternate Discussion to be integrated

We revisited the Lorentz transformation in the case of circular motion, that is, motion
with a uniform speed but continously changing direction, in the case that results in
Thomas precession. Now we consider the velocity transformation.

1.3.1 Instanteous Velocity Transformation

The Lorentz transformations of space-time coordinates

t0 =  (t� �x=c)
x0 =  (x� �ct)
y0 = y

z0 = z (19)

and their converse (primes exchanged with unprimes and � = v=c with �� are
di�erentiated with respect to t0 and used to �nd the velocity

~u = (u1; u2; u3) = (
dx

dt
;
dy

dt
;
dz

dt
)

~u0 = (u01; u
0

2; u
0

3) = (
dx0

dt0
;
dy0

dt0
;
dz0

dt0
) (20)

u01 =
u1 � v

1� u1v=c2
; u02 =

u2

(1� u1v=c2)
; u03 =

u3

(1 � u1v=c2)
(21)

u1 =
u01 � v

1� u1v=c2
; u2 =

u02
(1� u01v=c

2)
; u3 =

u03
(1 � u01v=c

2)
(22)

No assumption as the uniformity of ~u (or ~u0) has been made. These equations apply
equally to the instantaneous velocity in non-uniform (or circular) motion.

Now consider the magnitudes u and u0 de�ned as

u2 = u21 + u22 + u23; u02 = u021 + u022 + u023 (23)

Now we can readily calculate the (u) transformation laws by factoring out the (dt)2

and (dt0)2 from (cd� )2 = (cdt)2 � (d~r)2 = (cdt0)2 � (d~r0)2 and substituting in for u0i

dt2(c2 � u2) = (dt0)2(c2 � u02) = dt22(v)(1� u1v=c
2)2(c2 � u02): (24)

c2 � u02 =
c2(c2 � u2)(c2 � v2)

(c2 � u1v)2
(25)

(u0)

(u)
= (v)

�
1� u1v

c2

�
(u)

(u0)
= (v)

 
1 +

u01v

c2

!
(26)
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Now note how simple this is in the instanteous rest frame:

(u0) = (v)(u)

This should remind you of the rapidity formulation given in the homework. where
the rapidity is de�ned as the rotation angle

�(u) = tanh�1
�
u

c

�
; tanh(�(u) =

u

c
(27)

�(u) = �(u0) + �(v) (28)

Di�erentiating this with respect to time gives us a simple way to work out the
acceleration transformation.

1.3.2 Acceleration Transformation

d

dt
�(u) =

d

dt0
�(u0)

dt0

dt
(29)

Since the derivative of the hyperbolic tangent is the hyperbolic secant

d

dt
�(u) =

1

c
2(u)

du

dt
(30)

Since
dt0

dt
=

(u0)

(u)
(31)

Substituting we obtain the acceleration transformation formula

3(u0)
du0

dt0
= 3(u)

du

dt
(32)

Under the Galilean transformation, the acceleration is invariant; but, acceleration is
not in Special Relativity.

We need to de�ne the proper acceleration

j~aj � � �= 3(u)
du

dt
=

d

dt
[(u)u] (33)

where � is measured in the instantaneous rest frame.
Now constant instanteous acceleration (constant proper acceleration) is a

particularly simple case. Integrating and chosing u = 0 at t = 0 (or vice versa)
one �nds

�t = (u)u (34)

Thus at low velocity u increases linearly with t and as u! c (u) grows linearly with
time. Squaring, solving for u, and integrating again, chosing zero as the constant of
integration yields

x2 � (ct)2 = c4=� � X2 (35)

Thus, for obvious reasons, rectilinear motion with constant proper acceleration is
called hyperbolic motion.
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1.4 Rindler Space, Symmetry and GR

The equivlance principle implies a new symmetry and thus associated invariance.
With a realization and the uniqueness of solutions give a formulation to the theory
of gravity.

The strong and weak Equivalence Principle: The weak equivalence principle
is that gravitational and inertial masses are precisely equal (also includes Lorentz
invariance). The strong equivalence principle applies to all laws of nature that no
experiment can distinguish between an accelerating frame of reference and a uniform
gravitational �eld.

We can also use this symmetry approach to �nd the Rindler space. Consider
an \generalized elevator" as a kind of rocket ship in outer space far from the strong
inuence of Earth or any other body. Now give the \elevator" a constant acceleration
g upwards. All inhabitants of the \elevator" will feel the pressure from the oor,
just as if they were living in the gravitational �eld at the surface of the Earth (or
equivalent). This is a method of constructing \arti�cial" gravitational �eld. We now
consider this arti�cial gravitational �eld more carefully.

Suppose we want this arti�cial gravitational �eld to be constant in space and
time. We will �nd that we can make the arti�cial gravitational �eld uniform in time
and two spatial directions but it must decrease in the direction of the �eld itself. The
inhabitants will feel a constant acceleration.

Consider a coordinate grid for an elevator free to accelerate uniformly or be
in a uniform gravitational �eld, which we take to be �� inside the elevator, such that
points on the elevator wall and oor are given by �i and are constant. The zeroth
component �0 = c� , where � is the proper time (elapsed instanteous rest time in the
elevator). An observer in outer space uses a standard Cartesian grid x� in an inertial

frame there. The motion of the elevator is described by the function x�(~�).
That is the elevator is free to move only along one axis (the \vertical" axis).

We designate the \vertical" direction to be the z-axis. The origin of the ~� coordinates
is a point in the middle of the oor of the elevator, which for convenience coincides
with the origin of the ~x coordinates at t = � = �0(� ) = 0. Thus the coordinates of
the origin (center point of elevator oor) will be

~� = (c�; 0; 0; 0) ~xc = (ct(� ); 0; 0; z(� )) (36)

Time (� ) run at a constant rate for the observer inside the elevator.

 
@x�

@�

!2

=

 
@ct

@�

!2

�
 
@z

@�

!2

= c2: (37)

The acceleration is set to be ~g, which is the spatial portion of the four-acceleration:

~a =
@2x�

@� 2
= g�: (38)
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At � = 0 we can specify that the velocity of the elevator is zero:

@x�

@�
= (c;~0) (at � = 0): (39)

We can make use of the di�erential proper time along any world line d� = dt=.
Using the relation

 =
1p

1 � �2
=

s
1 +

�
gt

c

�2

(40)

we �nd

� =
Z

dtr
1 +

�
gt
c

�2 =
g

c
sinh�1

�
gt

c

�
(41)

Inverting this equation we �nd a relationship for t in terms of �

gt

c
= sinh

�
g�

c

�
(42)

This equation works for the origin. The acceleration depends upon location so that
the more general formula becomes

ct =

 
�3 +

c2

g

!
sinh

�
g�

c

�
(43)

z = x3 =

 
�3 +

c2

g

!
cosh

�
g�

c

�
� c2

g
(44)

At that moment t and � coincide, and if the acceleration ~g is to be be constant,
then at � = 0, @~g=@� = 0, so that

@

@�
g� = (F;~0) =

F

c

@

@�
x� � = 0; (45)

where F is an unknown constant.
Now this equation is Lorentz covariant. So not only at � = 0, but also at all

times we should have
@

@�
g� =

F

c

@

@�
x� (46)

Combining equations x and y gives

g� =
F

c
(x� +A�) =

g2

c2
(x� +A�) =

g2

c2
(x� + ��3

c2

g
);

x�(� ) = B�cosh(g�=c) + C�sinh(g�=c)�A�; (47)
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F �, A�, B�, and C� are constants. F = g2=c can be found from the derivative of
four acceleration evaluated at � = 0. Then from equations 16, 17, and the boundary
conditions:

(g�)2 = cF = g2; B� =
c2

g

0
BBB@
0
0
0
1

1
CCCA ; C� =

c2

g

0
BBB@
1
0
0
0

1
CCCA ; A� = B�; (48)

and since at � = 0, the acceleration is purely spacelike. We �nd that the parameter
g is the absolute value of the acceleration.

We notice that the position of the elevator oor at \inhabitant time" � is
obtained from the position at � = 0 by a Lorentz boost around the point x� = �A�.
This must imply that the entire elevator is Lorentz-boosted. The boost is given by
the rotation matrix with angle � = g�=c. This observation immediately gives the
coordinates of all other points in the elevator. Suppose at � = 0,

x�(0; ~�) = (0; ~�) (49)

Then at other � values

x�(c�; ~�) =

0
BBBB@

sinh(g�=c)
�
�3 + c2

g

�
�1

�2

cosh(g�=c)
�
�3 + c2

g

�
� c2

g

1
CCCCA (50)

The 0 and 3 (height) components of the � coordinates, imbedded in the x

coordinates, are pictured in the next �gure. The light cone de�nes the boundary
of the space at � = 0 the coordinates lie on the positive x3 axis in a very ordinary
way. Each x3 coordinate follows a hyperbola in x3 and c� that keep it in the right
quadrant (in x3- c� plane. The description of the quadrant of space time in terms of
the � coordiates is called \Rindler space".

It should be clear that an observer inside the elevator feels no e�ects that
depend explicity on his time coordinate � , since a transition for � to t0 is nothing but
a Lorentz transformation.

We also notice some important e�ects:
(i) Equal � lines (lines of simultaneity) converge at the left (at the x3 � c� origin).

It follows that the local clock speed, which is given by � =
q
(@x�=@c� )2. varies with

height � x3:
� = 1 + g�3=c2; (51)

(ii) The acceleration or gravitational �eld strength felt locally is ��2~g(�), which is
proportional to the distance to the point x� = �A�. So even though the �eld is
constant in the transverse direction and with time, it decreases with height (x3).
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(iii) The region of space-time described by the observer in the elevator is only part
of all of space-time, where x3 + c2=g > jx0j. The boundary lines are called (past and
future) horizons.

All of these are trypically relativistic e�ects. In the non-relativistic limit
(g ! 0) the coordinates simplfy to

x3 = �3 +
1

2
g� 2; x0 = c�: (52)

According to the equivalence principle the relativistic e�ects discovered here should
also be features of gravitational �elds generated by matter (or energy). Let us inspect
them individually.

Observation (i) suggest that clocks will run slower, if they are deep down in a
gravitational �eld. Indeed as one suspects equation x will generalize to

� = 1 + �(x)=c2 (53)

where �(x) is the gravitational potential. This will be true, provided that the
gravitational �eld is stationary (not time varying). This e�ect is called the
gravitational redshift.

Relativistic e�ect (ii) could have been predicted by the following argument.
The energy density of a gravitational potential is negative. Since the energy of two
masses M1 and M2 at a distance r apart is E = �GnM1M2=r, we can calculate the
energy density of a �eld ~g as T00 = �(1=8�Gn)j~gj2. If we have normalized c = 1,
this is also its mass density. But then this mass density in turn should generate a
gravitational �eld! This would imply

~@ � ~g = 4�GnT00 = �
1

2
j~gj2

so that the �eld strength should decrease with height. However, this reasoning is too
simplistic, since the �eld obeys a di�erential equation but without the coe�cient 1/2.

The possible emergence of horizons (iii) turns out to be a new feature of
relativistic gravitational �elds. Under normal circumstances the �elds are so weak
that no horizon will be seen, but gravitational collapse may produce horizons. If this
happens, there will be regions of space-time from which no signals can be observed.

The most important conclusion to be drawn is that in order to describe a
gravitational �eld, one may have to perform a transformation from the coordinates
�� that were used inside the elevator where one feels the gravitational �eld, toward
coordinates x� that describe empty space-time, in which freely falling objects move
along straight lines. Now we know that in an empty space without gravitational �elds
the clock speeds and the lengths of the rulers are described by a distance fuction c�

or ` as

(cd� )2 = �(d`)2 = g��dx
�dx� ; where g�� = ��� � diag(1;�1;�1;�1) (54)
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In tems of the coordinates �� appropriate for the elevator, we have for in�nitesimal
displacement d��,

dx0 = sinh(g�=c)d�3 + (1 + g�3=c2)cosh(g�=c)d�;
dx3 = cosh(g�=c)d�3 + (1 + g�3=c2)sinh(g�=c)d�: (55)

This implies

(cd� )2 = �(d`)2 = (1 + g�3=c2)2(dc� )2 � (d~�)2: (56)

If we write this in the form

(cd� )2 = �(d`)2 = g��(�)d�
�d�� = (1 + g�3=c2)2(dc� )2 � (d~�)2: (57)

then we see that all e�ects that the gravitational �eld have on rulers and clocks can be
described in terms of space and time dependent �eld g��(�). Only in the gravitational
�eld of a Rindler space can one �nd coordinates x� inerms of these the function g��
takes the simple form shown. We will see that g��(�) is all that is ned to describe the
gravitational �eld completely.

Spaces in which the in�nitesimal distance cd� or d` is described by a space
time dependent fuction g��(�) are called curved or Riemann spaces. Space-time is
apparently a Riemann space.

We can write the metric more explicitly as

g�� =

0
BBB@
�(�)2 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 �1

1
CCCA g�� =

0
BBB@
1=�(�)2 0 0 0

0 �1 0 0
0 0 �1 0
0 0 0 �1

1
CCCA (58)

where �(�) = 1 + g�3=c2.

dx� = (cd�; d~r) sx� = �2cd�; d~r) (59)

Note since the metric has the form

(cd� )2 = �(d`)2 = (1 + g�3=c2)2(dct2 � (d~r)2: (60)

then an object stationary at �xed ~r has proper time d� = �dt. A particle moving
with velocity ~v = d~r=dt will have proper time

d� =
q
(�dt)2 � (d~r=c)2 = dt

q
�2 � �2 = dt=� (61)

where � = 1=
p
�2 � �2.
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1.4.1 Uniformly Accelerating Clocks - Gravitational Freqency Shift

We could have derived these results by simply considering two clocks in a spaceship
(\rocket elevator") with constant acceleration or the Doppler e�ect on a photon
emitted at one end of the spaceship and received at the other and comparing this
to our thought experiment about a photon in a gravitational �eld. This approach is
much more physical but does not show all the features of the Rindler space.

Consider that the inertial (and by inference gravitational) \mass" of a particle
is given by the sum of its rest energy plus all other energies divided by c2. Thus the
inertial and gravitational mass of photon is E=c2 = h�=c2. If a photon changes its
gravitational potential through simple propagation then it must change its energy by
and amount �E = Egh=c2 where g is the acceleration of gravity and h is the height
change. Thus

�E

E
=

��

�
=

gh

c2
(62)

The fractional frequency change is the change in gravitational potential divided by
c2.

For comparison consider a lab accelerating at rate g with the two clocks
separated by a instanteous distance h along the acceleration direction. If the �rst
clock sends a photon of frequency �source, then the second clock recieves a photon
observed at frequency �observed we know that they are related by the Doppler formula
by

�observed = �source (1 + �cos�) (63)

Since the angle is either 0 or 180�,

�observed

�source
=  (1� �) (64)

The time it takes for the photon to get from the �rst to the second clock is
approximately �t = h=c and the velocity change is �v = g�t = gh=c or � = gh=c2

Di�erentially one has �2=�1 = 1 + gx=c2

The gravitational redshift was �st measured directly in the laboratory in 1960
by Pound and Rebka where they let a 14.4 keV -ray, emitted in the radioactive decay
of 57Fe, to fall 22.6 meters down an evacuated shaft where gh=c2 = 2:47� 10�15, and
they measured a fractional change in frequency of (2:57�0:26)�10�15, thus verifying
to that level the equivalence principle.

One could anticipate that for a spherical mass (M) in an otherwise at space-
time that the rate of clocks would vary as

dt(r)

dt(1)
= 1 � GM

c2r
(65)

1.5 Local Coordinates

It is sometimes better to use local standard clocks for the determination of velocity
and acceleration at each point, rather than referring to a single coordinate clock
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located at the origin. The former run faster than the latter by the factor �, so that
the local velocity �L of an object moving over coordinate intervals dx and dt is given
by

(�L)
i
=

d

�d�
(xi) or (�L)

i
=

1

�
�i (66)

A second application of this time derivative operator to (�L)
i gives the connection

between coordinate and local acceleration:

�
_�L
�i

=
d

�d�
(�L)

i
=

d

�d�

 
dxi

�d�

!
=

1

�2

"
_�i � @x�

�
�i�x

#
(67)

since @�� = (@x�)�x; hence,

(aL)
i
=

1

�2

"
ai � g

�
�i�x

#
(68)

Thus the local acceleration of a free-falling body is

(aL)x = �
g

�

"
1 � �2

x

�2

#
; (aL)y =

g

�

�x�y

�2
; (aL)z =

g

�

�x�z

�2
(69)

Thus the acceleration depends upon the local velocity and the local value of g at any
point is found to be gL = g=� with the local velocity (�L)

i = �i=� so that one can
write

(aL)x = �gL
h
1 � (�L)

2
x

i
; (aL)y = �gL (�L)x (�L)y ; (aL)z = �gL (�L)x (�L)z (70)

Freee-falling local acceleration appear here exclusively in terms of local
velocities and the local acceleration constant gL.

When an object falls vertically, its acceleration (aL)x ranges between �gL and
0 depending n (�L)x, rather than between �g and +g as it does at the origin.

1.6 Dynamics

The 4-D momentum is de�ned in an accelerated system just as it is de�ned in an
inertial frame.

~p = m0~u p� = m0u
� = (p0; ~p) = m0

�(1; �x; �y; �z) (71)

where ~p = �m0c
2� and p0 = �m0c

2 where E = m0c
2 is the proper energy. For

m0 = 0 in these equations one replaces �m0c
2 by E0. Because this is a 4-D vector

multiplied by an invariant, it can be found either by using he known values of �� in the
accelerated system or by transforming the inertial 4-D momentum to the accelerated
system.
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In its covariant form, it is

p� = g��p
� = (�2p0;�~p) = (p0;�~p) (72)

so that
p0 = ��2m0c

2

There are evidently two entirely di�erent energies of an object in the accelerated
system; the covariant and he contravariant energies.

If momentum and energy are conserved in a local interaction in an inertial
system, then the momentum and the covariant and contravariant energies are
conserved in the accelerated system. (�p = 0 is an invariant.)

However, if there a quantity is conserved over the path of a freely-falling
particle? The answer as we will show later is that the covariant energy is.

More generally, the covariant energy of an object is constant for any time-
independent metric.

1.7 Gravitational Redshift

The Equivalence principle leads directly to two interesting predictions about the
behavior of light in the presence of gravity. The �rst e�ect is that as light climbs up
a gravitational gradient, its frequency decreases. The second is that light is deected
by a gravitational �eld.

These e�ects are obvious, if one knows that light consists of photons where
E = h� is the relation between the photon's kinetic energy E and the photon's
frequency �. Einstein's formula relating inertial mass mI to energy E = mIc

2. The
weak Equivalence Principle states mI = mG. For the work done by a gravitational
�eld with potential � on a particle of gravitational massmG as it traverses a potential
di�erence d� is�mGd�. This must equalDE, the gain in the particle's kinetic energy.
For a photon, dE = hd�, and so

hd� = �mGd� = �mId� = �E

c2
d� = �h�

c2
d�; (73)

and thus
d�

�
= �d�

c2
(74)

Integrating this equation over a �nite path from A to B, one �nes

�A

�B
= e�(�B��A)=c

2

=
e��B=c

2

e��A=c
2

(75)

As for light bending in a gravitational �eld, imagine a ray of light as a stream
of photons; since these photons have inertial and gravitational mass, we expect them
to obey Galileo's principle and follow a curved path just like a Newtonian bullet

17



traveling at velocity c. That wold make, for example, the downward curvature of
a horizontal beam in the earth's gravitational �eld with x horizontal and z vertical
equal to

d2z

dx2
=

d2z

c2dt2
= � g

c2
: (76)

In units of years and light-yeas c = 1, and it so happens that g � 1.

1.8 Static and Stationary SpaceTimes

A stationary �eld is one that does not change in time and a static one is one where
the sources do not move. The most important property of stationary spacetimes is
that they admit a preferred time. The metric of every static �eld can be brougt to
the canonical form

(cd� )2 = ds2 = e2�=c
2

c2dt2 � d~r2 = �2(cdt)2 � d~r2 (77)

where the last part uses our previous notation. We can calculate the elapsed proper
time

d� 2 = dt2
�
e2�=c

2 � �2
�
= dt2

�
�2 � �2

�
(78)

d� = dt
q
e2�=c

2 � �2 = dt
q
�2 � �2 = dt=� (79)

In the weak �eld limit�=c2 << 1, e2�=c
2 ' 1 + 2�=c2.

ds2 ' (1 + 2�=c2)c2dt2 � dl2

For a particle-worldline between two events P1 and P2, we have

Z P2

P1

ds =
Z t2

t1

ds

dt
dt = c

Z t2

t1

 
1 +

2�

c2
� v2

c2

!1=2

dt; (80)

where v = dl=dt is the coordinate velocity of the particle. The binomial approximation
gives

Z P2

P1

ds = c

Z t2

t1

 
1 +

2�

c2
� v2

c2

!1=2

dt = c

Z t2

t1

 
1 +

�

c2
� 1

2

v2

c2

!
dt = C(T1�T2)�

1

c

Z t2

t1

�
1

2
v2 � �

�
dt:

(81)
The condition that

R
ds be maximal is therefore equivalent to the last integral being

minmal. That is exacatly Hamilton's Principle.
One consequence which we can read o� immediately is what is called the

Shapiro time delay. A light-ray satis�es ds2 = 0 and thus e�cdt = �dl, the two signs
corresponding to the two possible directions of travel. Consequently a radar, or other
light signal, reected from a distant object will return to its emission point after a
coordinate time

�t = 2
Z
e��dl (82)

has elapsed there, where the integration is performed over the path of the signal.
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